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INTRODUCTION

in this report we summarize the results of experiments in which Lg waveforms are ~vnthosed
cither by dynamic raytracing and or superposition of Gaussian beams (Cerveny. 1955, i b
dimensionally varying crustal wavegnides.  In both approaches. Ly is represenmed as o <o o
multiply eritically reflected SmS waves (igure 1), Topography of the Moho is correlated with oo
or known surface topography under the assumption of Airy isostasy. The starting assnraptons
are essentially the same as those used by Kennett (1986) in identifying gross offeets of oo
thickness on Lg by plotting the bounce points of critically reflected § waves in the cruss. Hero
however, waveforms arc calculated and the effects of geometric spreading are included. Detio's ot i
modeling approach, including source functions assumed, are deseribed in (Cormier and Rilidoo !

1991).

RESULTS

Propagation Perpendicular to a Mountain Range

l.g is modeled by summing dynamically traced rays in a laterally varying crustal wavegiide «hn-
Jating a hypothetical mountain range. Crustal thickness contours are shown in map view in Ficure
la. Certain characteristics, such as the square corners of the contour lines, are concessions s
for modeling simplicity and are not expected to greatly influence the results. Background crisra
Lhickness is taken as 35 km, which represents continental crust slightly clevated above sea el
The thickness of the mountain root is 50 km, which is consistent with gravity surveys in virios
high mountainous regions (e.g. Press and Sicver, 1982, p. 437). A physical analogy to this moded
may be found in the South American Andes, which is similarly a narrow range with abrupt Lonts
on both sides.

Tested propagation paths are shown in Figure 1a and ray synthetic seismograms in Figure 1h
for a vertical point force. The first trace shows Lg at the same offset as receiver R thronch
undisturbed waveguide. Traces 2 through 4 are recordings from receiver locations Ry throngh R
Visual comparison of the traces gives a measure of attenuation and the extensive numerical data
from the program runs explain the primary cause (mantle transmission and/or defocusing}. The
seismogram from location Ry shows that early Lg arrivals have high amplitude but later arrivals are
considerably weaker. The effects of crustal thinning are not evident at this location and the weaker
signal is explained entirely by propagation across the transition to thicker crust. The mcilind of
attenuation is defocusing. The slower ray paths reaching location R are reflected in areas of Moho
curvature and as a result, average geometric spreading is increased by a factor of 2. Since Moho
curvature is found to cause attenuation in this and other program runs, it is useful to consider
an alternative transition model; a planar dipping Moho. The planar surface will not canse the
increase in geometric spreading noted above, but will result in attenuation through other meuns.
Specifically, much of the defocused energy that reaches the receiver through curved transitions is
reflected by planar transitions in directions that do not reach the receiver. This is easily visiaiized
by considering rays tubes and the area between rays, which is the wavefront. Delocusing foais 1o
larger wavefronts which have a better chance of reaching the receiver than do the smaller wavefronts




reflected by planar surfaces. The present study has compared the methods and found comparable
levels of attenuation, although the seismograms are somewhat different in appearance,

A very slight increase in attenuation is evident at receiver location R, primarily becanse .
rays reaching this point are defocused to some extent. Attenuation at location Ry is quite a by
stronger than at Ry and Rz. Here the propagation path crosses the transition to thinn r cns,
which diverts much of the energy that would otherwise reach the receiver. Diversion occurs in
three ways. First, rays travelling at post-critical angles relative to the horizontal Moho become
pre-critical at the upward dipping transition, and energy is lost to mantle transmission. Secondiy.
a large portion of the remaining reflected energy travels at pre-critical angles, leading to muantje
transmission beyond the transition. The third method of diversion is back-reflected rays.

Propagation Parallel to a Mountain Range

Figure 2 illustrates the results of tests of Lg propagation parallel to the strike of a mountain
range for a vertical point force. Sources and receivers are assumed to lic within a monntain range
baving a deep crustal root. Seismogram trace 1 shown again for reference propagation in a cris
having planar free surface and Moho. Traces 2-4 correspond to receiver locations R;, R, and R..
Transition zones trending parallel to the propagation path form a secondary waveguide and t};
modeling predicts that rays will be trapped within. These raypaths are weak, however, as Moho
curvature causes significant attenuation by geometric spreading. The seismogram at location R,
which is not subject to transitions perpendicular to propagation, shows energy roughly equal 1o
undisturbed Ig. Although a large number of raypaths with lateral reflections were traced. the
increased geometric spreading leads to weak arrivals. The traces at locations Rg and Ry are seen
to be strongly attenuated by the crustal thinning transition.

Rays trapped by the lateral waveguide undergo conversion between SV and SH, but conversions
of this type are not noticeable in the synthetic seismograms. It is possible that because these rayvs
tend to be weak, the conversions are not noticeable. Another possibility is that SH to SV conversion
is generally canceled by SV to SH conversion under the particular conditions of this model. In the
real crust, the primary method of SV to SH conversion is scattering by small scale heterogeneitios,
which can not be considered under the constraints of ray theory.

Propagation Oblique to a Mountain Range

Figure 3 illustrates the attenuation of Lg for paths oblique to the strike of a mountain range for
a vertical point force. Sources and receivers are located such that propagation paths are at 9o,
70, 45 and 20 degrees relative to the waveguide perturbations. Receiver distance is 2000 km in
all cases. Strong attenuation is evident over each propagation path, but the individual waveforins
vary considerably. For paths terminating at receivers Ry and Ry, rays encounter steep thickiess
transitions and many rays are entirely transmitted to the mantle. Along the more oblique path:
leading to Rz and Ry, the Moho dips less steeply and as a result, the number of two-point ray paths
increases. It appears that Lg propagates slightly more efficiently at 45 degrees than at the otha
angles tested, but the difference is insignificant compared to the level of attenuation.




Width of Crustal Transition

In crustal models shown in figure 1a, 4a and 4b, the width of the transition region between thick
and thin crust is varied. ‘The source-receiver paths are 2000 km in length and perpendieing o
the strike of the transit.on regious. Syunthetic traces 2 and 3 in Figure 4, which compuare o Ziny
km width of thickened crust with a 500 km width, both show weak Lg. The similarity between
traces suggests that the width of a mountainous region has very liclie effect on overall attennation,
‘I'race 4 shows Lg after propagation through transition regions 200 kin wide {compared 1o 104 km
wide in trace 2) and the difference is readily apparent. The widened transition width resulis in Lg
amplitude analogous to that in the undisturbed waveguide, which implies that the width of erustal
transition regions and the corresponding change in overall Moho dip angle impose the primary
control over Lg attenuation.

Propagation Across the Tibet Plateau

The map shown in Figure 5a gives source and receiver locations used in the Lg analvsis of Ruzakin
et al. (1977). Shading corresponds to regions of high mountains. Central Asia wa~ chosen 1o
test the methods of the present study because Lg is known to be highly attenuated here anid good
specific examples are given in published seismograms. A study of focal mechanisms in the Tibetan
Plateau {(Molnar and Chen, 1983) found these earthquakes to occur at depths of 5 to 10 ki with
combined strike-slip and normal faulting and T axis primarily cast-west. No earthquakes were
located below 10 to 15 km, suggesting the crust is essentially aseismic below these denthis. The
fault solutions indicate the ‘Tibetan Plateau is undergoing east-west extension, much like the Basin
and Range province of the Western United States.

Crustal thickness has been hand digitized and the results, in the form of a Moho depth plot.
are shown in Figure 5b. Samples are taken at a .5 degree (50 km) sampling of latitnde and
longitude. (Topography and Moho depth at 10 km sampling are now available in unclassified
databases established by Fielding et al., 1992.) The method of determining crustal thickness is a
combination of published survey results and inference. Choudary, 1975 estimates crustal thickness
of 70-72 km in the Central Himalayas from Bouger gravity anomalies. Bird and Toksoz, 1975 study
the velocity of 20-80 second Rayleigh waves and conclude that the crust is 75 km thick within
the Tibetan Plateau. Published data on crustal thickness within the Tarim Basin and Tien Shan
Mountains were not found, so thickness has been estimated from average elevation. Flevation
varies from 500 to 1000 meters within the Tarimn Basin and crustal thickness is estimated at 35
km. Average Tien Shan elevation is on the order of 3000 meters, leading to a thickness estimate
of 50 km. Estimation of crustal thickness combined with the large digital sampling intervals lead
to a very rough model of the crust, but the transitions, which seem to most strongly effeer 1g
propagation, are represented as closely as the model will allow.

Figure 5a shows propagation paths from the two earthquakes chosen for maodeling by the ray
method. Double couple radiation patierns have been included. Both paths are subject to erustal
thinning at the Tarim Basin then crustal thickening at the Tien Shan mountains before the waves
are recorded at Soviet station Talgar (‘TLG). Since the paths are similar, transition steepness wili
be approximately the same. The main difference between paths is that the the more westerly path




from the earthquake near 87°E longitude travels about half as far within the Tibetan Platean as
the path from the earthquake near 93° longitude. Figures 6a,b compare the observed and synthetic
seismogram for the earthquake (mb==5.1) having the more westerly path. Lg appears to be stroneh
transmitted, having a high amplitude relative to Pn. The synthetic agrees well with details of thy
observed Lg coda. Figures 7a,b compare seismograms recorded from earthquake (mb6.1) having
the more the easterly path. Lg appears to be very weak in these recordings, having a low amplitude
relative to Pn. The synthetic seismogram has high amplitude pulses not seen in the obscrved
seismogram.

Certain additions to the crustal model could significantly improve the match between the syn-
thetics and the recordings. First, inclusion of the low Q believed to exist in the deep crust of
the Tibetan Plateau (Bird and Toksoz, 1975) would improve the agreement. between observed and
predicted Lg transmission Each ray incident at the Moho beneath the Tibetan Platean wounld
be subject to high intrinsic attenuation, establishing a direct relationship between travel distance
within the plateau and attenuation suggested by the observations. Scattering attenuation by the
3-D heterogeneities associated with the uplifted region would tend to reinforce this relationship.
Details of the shallow structure of the Tarim Basin have been omitted from the crustal maodel,
The weak path , for which poor agreement exists between observed and predicted Lg transmission.
crosses the Tarim Basin. Baumgardt (1991) found that sedimentary basin structure is at leass
as important, if not more important, than Moho topography in controlling Lg propagation. Low
seismic velocity within the sediments can form a waveguide trapping a significant portion of the
rays that would otherwise contribute to Lg, the slopes of the basin on exiting side rays acting to
defocus subsequent SmS rays (Figure 8). Rays reverberating within the sedimentary basin wonld
also suffer high levels of scattering attenuation within the sediments. A third possibility for the dis-
crepency between the observed and predicted Lg waveforms in the weak path example is suggostod
by comparing the topographically inferred Moho with that determined hy the Soviet Deep Seisinn
Sounding Project (DSS). In the region of the Tibet Plateau, the transition zone between norimal
and thickened crust is quite different in form in DSS sections than that which would be predicted
by simple isostasy (Fielding, personal communication). One or more of these modifications of the
crustal model may lead to synthetics that more closely match the attenuation levels seen in ths
recorded seismograms.

Scattering Within the Crustal Waveguide

The modeling described in the previous subsections does a remarkably good job in predicting
the blocking of Lg by major crustal transitions and is often successful in accounting for the most
significant details of the Lg coda. It is clear, however, that observed Lg codas will be always contain
greater complexity than synthetic codas generated in models having a homogencous erust. We have
conducted several experiments to include the effects of fine scale three-dimensional heterogeneitics
within a crustal waveguide of variable thickness. To achieve this goal, we added dynamically traced
rays to point scatterers within a crustal waveguide of variable thickness (Figure 9). A standara
Born approximation (e.g.. Wu and Aki, 1985) is used to calculate the radiation pattern of the point
scatterers. The results shown in Figure 9 were calculated for a single poimt. heterogencity having
positive 5 per cent contrasts in P velocity, S velocity, and density from the background medinm,




It is clear that the existence of even a single point heterogeneity quickly acts to il up the cada
between multiply reflected S waves.

The standard Born approximation used in this demonstration does not conserve energy and doeg
a poor job in recreating scattered codas predicted by finite difference solutions of the clastie equarion
of motion in heterogeneous media (Coates and Charrette, 1992). Improved agreement with finite
difference simulations can be obtained by using the generalized Born approximation {Coates and
Chapman, 1991). The generalized Born approximation, in which scattering occurs by a process
of frequency dependent reflection by regions of higi: gradient, ix applicable to models in which
velocities and density are parameterized by continuous functions of space. Such a paramcterization
also greatly simplifies the description of the rays contributing regional seismograms.

Importance of Scattering in Different Depth Regions of the Crust

Lg rays have been dynamically traced in models of the crust in which the Moho has been reproserns !
by a high gradient transition (Figure 10). The SmS rays contributing to the Lg coda are turning
rays in the high gradient region. Geometric spreading factors have been tracked along each rav
demonstrating that the spreading factors of individual rays vanish at the turning points within
the Moho transition. It is well known that such a high gradient zone will forin a canstic strface
within the high gradient zcne, to which muitiple turning rays will be tangent. A reversed travel
time branch and triplication will also be observed for rays traced at a sequence of increasing t.ke-
off angles. Scattering of Lg rays near the caustic surface, where amplitudes will be high due 10
the vanishing of the geometric spreading factor, will be greatly enhanced. This situation iz very
analogous to the enhanced amplitude of scattered PKIKP precursors due to heterogeneity at the
core mantle boundary (e.g., Bataille and Flatte, 1988). For PKIKP precursors, the presence of
a caustic surface in the outer core is sufficient to make even a very slight heterogeneity near the
core-mantle boundary account for the observed amplitudes of the scattered waves. Likewise, a
canstic surface within a Moho transition zone will eapable of amplifying the effects of very shgh
heterogeneity within the Moho transition.

In predicting regions in which enhanced scattering may occur it is also useful to consider the
intersections of SmS rays traced from the recciver with SmS rays that originate at the sovrce. In
two-dimensional scattering, the existence of a heterogeneity at such crossing points will make ir
possible for SmS to SmS scattering to occur, filling up the coda between the individual SmS arrivals
making up the Lg coda. The greatest density of such crossing points occurs near the Moho transition
and near the free surface. An important source of the late Lg coda will be three-dimensional SmS
to SmS scattering occurring out of the vertical plane containing the source and receiver.

CONCLUSIONS AND RECOMMENDATIONS
Modeling Results

(1) Moho Topography and Sedimentary Basins are the two most important elements struetares
responsible for Lg blockage.




(2) Slopes of major crustal discontinnities and transitions (Moho and basin-sediment interfaced wre
the principal features controlling the propagation efficiency of Lg.

(3) There is only a weak dependence on the azimuth of the propagation path with respect 1o the
strike of blocking features.

(4) Distributed heterogeneities and small scale topography of crustal discontinnities in the crns
can act to fill up and lengthen the Lg coda. Heterogencities within the crust primarily alone 1l
sonrce-receiver azimuth fill up the carly coda between individual § waves trapped in the crustad
waveguide. Off azimuth heterogeneities within the crust are a significant component, of the late [
coda following the last arriving Moho reflected S wave.

Lessons from Ray Based Approaches to Regional Seismogram Synthesis

{1) Utility of a Continuous Model Parameterization: The complexity of ray code descriptions i
models described by first order discontinuities argues for models parameterized by functions con
tinuous in space.

(2) Treatment of Reflections and Conversions in Regions of Strong Gradient: A generalized Born
approximation can be used to calculate the frequency dependent scattering by regions having strong
gradient, including the Moho transition zone resulting from the parameterization described above.

{3) The Most Important Regions of Scattering for the Lg Phase and Why:

(a) Moho transition because a caustic surface is included in this region for many of the 8 waves
composing the Lg phase. In addition there is a high density of S ray intersections in this region
permitting scattering from one type of multiply reflected S wave composing the Lg phase to anothe
tyvpe.

(b) The free surface region because there is 1 high density of S ray intersections in this region
permitting scattering from a source ray consisting of multiple Moho reflected S waves to a receiven
ray consisting of multiply reflected S waves. In addition, this region should be important based on
array data suggesting a higher magnitude of velocity and density fluctuations in the upper 2 km o
the crust.
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Figure 1 (a) Above: propagation paths normal to strike of mountain range. This map view shows
the crustal thickness contours of a narrow hypothetical mountain beit, along with the Lg propaga-
tion path and receiver locations. R, through R offsets are 2200, 2300, and 2400 km respectively. an
unperturbed waveguide. (b) Below: ray synthetic seismograms for paths to receivers Ry through
Ra. Trace ! is Lg modeled at the Ry offset in an unperturbed waveguide. Transverse ground

motion is not shown because SV to SH conversinn does not occur when the propagation path is
perpendicular to waveguide variations.
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Figure 2 (a) Above: propagation paths parallel to the strike of the mountain range. Offsets
are 2200, 2300, and 2400 km. to receivers within the mountain range. (b) Below: ray synthetic
seismograms. An increased number of ray paths reach receiver R, relative to receivers Ry and Rj
resulting from lateral reflections within the mountain belt. Coda duration is sharply limited at the
R and Rj. Very weak motion can be seen on the transverse traces.
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Figure 3 Lg propagation at paths making oblique angles to the stnke of the mountan range.
Above: (a) path to R, is at 90°, path to R, is at 70°, path to R4 is at 45°, and path to Ry is at
20°. teceiver offset is 2000 km over all paths. Below: (b) ray synthetic seismograms. Although
waveforms 2-5 vary considerably, all have been considerably attenuated relative to the reference
trace in an unperturbed waveguide and total energy is roughly the same for each of these paths.
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Figure 4 Effect of the width of crustal thickening and thinning. The crust increases and decreases i
thickness over transition regions 100 km (above) and 200 km (middle). Ray synthetic Lg wavetrains
are shown below for an offset of 2000 km and propagation perpendicular to the strike of the mountain
range. Weak Lg in traces 2 and 3 compared to strong Lg in trace 4 indicates that the width of the
transition region affects Lg efficiency more than the overall width of the mountain root.
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Figure 5 Above: (a) map of Central Asia showing the propagation paths of two earthquakes

modeled by ray methods. Shading highlights high mountainous regions of thickened crust. The
left path gives a detectable Lg signal and is referred to as the strong path. Lg from the right
carthquake is very weak. Below: (b) Central Asian Moho depth plot obtained by digitization of
crustal thickness values. Not to scale. ‘
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Figure 6 Above: (a) Central Asia strong path seismograms. The seismograms recorded from the
left earthquake of figure 5a show clear Lg energy in both the top trace (instrument response peaked
between 0.5 to 1 Hz.) and bottom trace (instrument response peaked between 0.2 to 0.5 Hz.).
Middle: (b) scaled strong path svnthetic. The synthetic seismogram is scaled to the dimensions of
the actual seismogram and shows good recreation of Lg. Below (c¢): detailed strong path synthetic.
These synthetic seismograms are not scaled to the recordings and allow determination of the level

of attenuation. Ray modeling through a homogeneous crust predicts significant attenuation over
this path.
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Figure 7 Above: (a) Central Asia weak path seismograms. The seismograms recorded from the
right earthquake of figure 5a show very weak Lg, as can be seen by comparing Lg amplitude to
Pn. Middle: (b) scaled weak path synthetic. The synthetic seismogram of the weak path predicts
energetic pulses that are not present in the actual recordings. Below: (c) detailed weak path
synthetic. Lg is clearly atienuated over this path but, as seen in figure 9b, the predicted level of
attenuation is insufficient to explain the observations.
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Figure 8.  Top: Iso-§ velocity contours defining a deep sedimentary
basin (Z and Xco-ordinates are in kilometers.) Bottom: ray
trace of S waves trapped in the crustal waveguide (Lg). Note
that the effect of the basin will be to attenuate Lg at stations
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Figure 9. Effect of scattering within a crustal waveguide of variable thickness. Left
column: no scattering within the crustal waveguide. Right column: scattering by a single
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are densest near the surface and near the SmS turning points. Scatterers at these locations
will contribute to the complexity of Lg coda. Scattering near the Moho transition will be
particuiarly important because the presensce of a caustic in this region will greatly amplity
the effects of small perturbations in elastic moduli and density.
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